If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2=85
We move all terms to the left:
k^2-(85)=0
a = 1; b = 0; c = -85;
Δ = b2-4ac
Δ = 02-4·1·(-85)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{85}}{2*1}=\frac{0-2\sqrt{85}}{2} =-\frac{2\sqrt{85}}{2} =-\sqrt{85} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{85}}{2*1}=\frac{0+2\sqrt{85}}{2} =\frac{2\sqrt{85}}{2} =\sqrt{85} $
| 5p-4+5p+17=9p-11+2(p+2)+15 | | 2(4x+1)+5x-4=180 | | 4c-3=10 | | 13x-1=7x-5=134 | | 180=5y+202-10y+79-101+5y | | 5(x-2)+6=-3(x+6)+x | | 10+6c=46 | | 143x=5 | | 10x–3(2x–4)=84)5x–4(2+4x)=14 | | 9y-4=9y−4=86 | | 2z+2=2z+26 | | x+5+64=90 | | 4h+11=-5 | | -8(x+3)-2x=-34 | | 9+11x+1=22x-1 | | -2(6x-5)+8=-12x+18 | | -20+x=70 | | (2x-2)^2=27 | | -2r=-r+20 | | (13x-1)(7x-5)=134 | | 0.85=x/44 | | 25x-200=35x-350 | | 5+0.65y=10+0.45y | | -4=1a | | 5+0.65y=10+0.45 | | 0.25x+17=45.50 | | -3(-2)(5)=t | | 18t=36 | | X-1+2=2x-9 | | 5a+3=a-7+4a | | 8+-3x=-8+5x | | 8y+9=10y-7 |